Что такое сонография

Когда врач направляет пациента на УЗИ, лишних вопросов обычно не возникает. Но если в назначении использовано загадочное слово «сонография», то вопросы сыплются, как горох. А значит, стоит разобраться, сонография — что это такое? И в каких случаях пациенту дают подобное назначение.

Ассоциации

Первые ассоциации пациента связаны со сном, но сонография не имеет к этому никакого отношения. УЗИ и сонография – разные названия одной процедуры. Для этого же исследования иногда применяют название эхография. Исходя из этого, можно сделать простой вывод: УЗИ, эхография, сонография — что это такое? Это ультразвуковое исследование, производящее оценку морфологических и функциональных параметров органов и тканей человека.

На чем основан метод

Метод УЗИ базируется на особенностях ультразвуковых волн, пропущенных сквозь организм. В любом живом существе органы состоят из тканей различной плотности и сопротивления. Благодаря этому ультразвук отражается, преломляется, рассеивается или поглощается. В результате на принимающем устройстве возникает изображение. То есть фактически УЗИ является регистрацией отраженных от объектов эхосигналов.

Медицинская аппаратура для проведения УЗИ (сонографии) использует частоты от 1,5 до 29 МГц. Максимальная высота звука, которую может воспринимать человеческое ухо, 20 КГц. Полученное изображение – не просто контур внутреннего органа или участка кости, как при рентгене, а отображение внутренних структур.

Краткое описание аппарата УЗИ

Для проведения обследования используют медицинский аппарат УЗИ. Сонография — что это такое? Все ли аппараты одинаковы? Из каких элементов они состоят? Лучше всего в устройстве аппарата УЗИ могут разобраться физики. Они понимают, что такое пьезоэлектрический эффект, разбираются в длинах, колебаниях и частотах. Рядовому пациенту достаточно знать, что аппарат состоит из следующих элементов:

  • генератора ультразвуковых волн, то есть импульсного датчика, излучающего и одновременно принимающего отраженные сигналы;
  • ультразвукового датчика-трансдюсора, в котором располагается большое количество пьезокристаллических преобразователей, в датчике присутствует фокусирующая линза, позволяющая концентрировать внимание на нужной глубине.

Виды трансдюсоров (датчиков)

Первоначальное подразделение производится на механические и электронные приборы. Сканирование механическим датчиком выполняется за счет движения излучающего элемента (вращение или покачивание). Основной недостаток – низкое разрешение картинки, вибрация и шумная работа. Современная ультразвуковая сонография отказалась от устаревшей модели, предпочитая использовать электронные версии.

Электронные датчики относятся к более современному оборудованию. Развертка изображения производится электронным путем. Картинка получается более четкая и полная. Шум и вибрация при работе оборудования отсутствуют.

Ультразвуковое сканирование подразделяется на линейный, конвексный и секторный тип. Исходя из этого, применяется 3 вида датчиков:

  1. Линейный. Использует частоту 5-15 МГц. Выдает изображение исследуемой зоны с высоким разрешением картинки, величина органа соответствует ширине датчика, но глубина сканирования не более 11 см. Сложно обеспечить равномерное прилегание широкого датчика, чтобы получить качественную картинку. Используется для сканирования щитовидной железы, груди, некрупных суставов и мышечной ткани.
  2. Конвексный. Частота 1,9-7,5 МГц. Сканирующая поверхность меньшей длины, чем у линейного датчика. Позволяет обеспечить плотное равномерное прилегание к коже. Выдает неширокую картинку, несколько искаженную по размерам, но глубина осмотра до 25 см. Применяется для обследования органов брюшной и забрюшинной полости, мочеполовой системы, крупных суставов (тазобедренный, например).
  3. Секторный. Использует частоту 1,5–5 МГц. Изображение крупнее реального. Дает возможность сканирования на большой глубине. Чаще всего применяется для эхокардиографии.

Разные типы датчиков используют для обследования органов брюшной полости, сердца, щитовидной железы, груди, позвоночника и суставов. Кроме того, существуют микродатчики для эндоскопии и игл биопсии.

Обследование беременных

Оптимальным вариантом для полноценного обследования беременных считается компьютерная сонография. Подобное оборудование позволяет максимально внимательно рассмотреть состояние органов плода, начиная с четырехсантиметрового размера. Обследование полностью безопасно. Оно помогает с четвертой недели беременности прослушивать сердцебиение, определить и устранить угрозу выкидыша, уточнить срок беременности, определить задержки развития и другие отклонения.

Проходимость маточных труб

Необходимость оценки проходимости маточных труб возникает у женщин, которые не могут забеременеть в течение продолжительного срока. Сонография маточных труб – один из методов оценки причин, по которым яйцеклетка не может встретиться со сперматозоидом.

Сначала врач осматривает состояние полости матки, убеждается, что женщина не беременна и не имеет спаек, полипов и узлов. Далее в канал шейки матки вводится физиологический раствор, и с помощью сонографии оценивается проходимость маточных труб. Если трубы проходимы, то жидкость сливается с обеих сторон от органа в брюшную полость. Если жидкость не сливается, а заполняет отрезок маточной трубы и матку, то труба непроходима. УЗИ позволяет точно определить место блока.

Если пациент понимает значение термина «сонография», что это такое и зачем врач назначил обследование, то он не чувствует страха, готов выполнить необходимые требования доктора и правильно относится к процедуре. От этого зависит многое. Поскольку часто вместо обследования и лечения испуганные пациенты обращаются к шарлатанам и «целителям», теряя драгоценное время.

С таким видом исследования внутренних органов, как ультразвуковая диагностика (УЗИ), знаком практически каждый, а вот о том, что такое сонография, знают далеко не все.

На самом деле, УЗИ и сонография – это одна и та же процедура, которая в медицине имеет еще и третье название – эхография.

Ультразвуковая диагностика (сонография, эхография) – это один из наиболее распространенных и самых информативных видов аппаратных исследований внутренних органов.

Что собой представляет исследование?

Сонография абсолютно безопасна для человека: ультразвуковые обследования практически не имеют противопоказаний, могут проводиться беременным женщинам и больным в тяжелом состоянии.

Поэтому по сравнению с рентгенографией или компьютерной томографией, УЗИ имеет несомненное преимущество.

Посредством УЗИ-диагностики можно визуализировать любые органы и системы организма. При этом наиболее распространена эхография брюшной полости, органов малого таза (в том числе маточных труб), желчного пузыря, печени, почек, сердца.

Ультразвуковая диагностика дала возможность медикам выявлять заболевания на самых ранних стадиях их развития, что подарило миллионам больных во всем мире шанс на полное выздоровление, а кому-то – и на жизнь.

Незаменима сонография для обследования беременных женщин. Благодаря ультразвуку доктор может наблюдать за ходом внутриутробного развития плода и выявлять патологии на ранних стадиях, а значит, вовремя принимать необходимые меры, назначать действенное лечение.

Что же представляет собой УЗИ-диагностика, каков механизм ее работы? Данный вид исследования предполагает воздействие на организм человека посредством ультразвука – звуковых волн с очень большой частотностью, которую человек своими органами слуха воспринимать не способен.

К примеру, при сонографии желчного пузыря, маточных труб и печени используются приборы, продуцирующие волны с частотой порядка 10 Мегагерц.

Это дает возможность визуализировать мельчайшие части органов и их ткани. В ходе ультразвукового исследования на монитор доктора передается реальное изображение внутренних органов пациента, причем картинка динамична, что даже позволяет отследить кровоток, его скорость и характер движения.

Каким же образом УЗИ-аппараты визуализируют внутренние органы и системы? Принцип их работы основан на способности ультразвуковых волн отражаться: когда они пронизывают ту или иную ткань или орган, некоторое количество волн отражается и возвращается.

Именно эти отражения и фиксируют датчики аппарата, после чего превращают их в электроимпульсы, а уже специальная компьютерная программа трансформирует импульсы в изображение и передает картинку на монитор узиста.

Для получения максимально полной информации больной орган необходимо исследовать с разных сторон, в связи с этим пациента могут попросить в ходе обследования несколько раз менять положение.

Особенно это актуально для обследования беременных, диагностики желчного пузыря, печени, маточных труб.

Также в ходе сонографии всегда используется специальный гель, который препятствует отражению ультразвуковых волн от тела.

Недостатков у сонографии крайне мало: под воздействием ультразвука плохо просматриваются внутренние органы, в которых содержится газ.

В связи с этим перед обследованием органов брюшной полости необходим прием препаратов, подавляющих газообразование.

Кроме того, ультразвуковые волны позволяют получить качественную картинку на глубине не более четверти метра, поэтому сделать УЗИ желчного пузыря или печени пациентам с ожирением бывает довольно проблематично.

Далее для примера более детально расскажем о сонографии желчного пузыря и маточных труб.

УЗИ желчного пузыря

Ультразвуковая диагностика одного желчного пузыря проводится крайне редко.

Чаще всего сканируется сразу несколько тесно связанных между собой органов: желчный пузырь, печень и поджелудочная железа. УЗИ незаменимо для ранней диагностики камней в желчном пузыре и его протоках.

Благодаря тому, что доктор видит изображение в режиме реального времени, посредством сонографии возможно очень точно рассчитать место расположения и размеры камней.

Показаниями к проведению УЗИ желчного пузыря являются:

  • холецистит (острый и хронический);
  • водянка;
  • дискинезия желчного пузыря;
  • эмпиема и подозрение на нее;
  • сильные боли с правой стороны под ребрами;
  • выделение рвотных масс с примесью желчи;
  • затяжная диарея;
  • желтизна кожных покровов.

Кроме того, УЗИ желчного пузыря является обязательным обследованием новорожденных недоношенных детей, а также младенцев, которые плохо набирают в весе или страдают слишком частым стулом.

Чтобы исследование было максимально информативным, к УЗИ желчного пузыря необходимо правильно подготовиться.

Следует знать, что исследование проводится натощак, то есть прием пищи нужно закончить не менее чем за 7 часов до начала процедуры.

Также за несколько дней до сонографии желательно не употреблять продукты, усиливающие газообразование в кишечнике: мучные изделия, белокочанную капусту, бобовые.

3-4 дня перед УЗИ желчного пузыря необходимо регулярно пить ферменты, которые назначит лечащий врач.

Вечером перед исследованием необходимо выпить слабительное и/или поставить клизму, чтобы качественно очистить кишечник.

Если же речь идет об исследовании желчного пузыря грудничка, малыша нужно не кормить за 3-4 часа до процедуры.

Само исследование не длительное, дискомфортных ощущений пациенту не приносит, длится всего несколько минут. Однако малыши на нанесение холодного геля зачастую реагируют плачем.

Существует также функциональное УЗИ желчного пузыря. Это исследование направлено на определение сократительных способностей органа.

Исследование в данном случае состоит из двух этапов: оценка работы желчного пузыря, когда человек голоден, и через 20 минут после того, как он употребил так называемые желчегонные продукты (кисломолочные продукты, черный шоколад).

Затем врач соотносит результаты двух исследований и пишет свое заключение.

Результаты исследования и заключение узиста, как правило, пациенту или его лечащему врачу отдают уже через час после процедуры.

УЗИ маточных труб

Наиболее распространенным показанием к проведению ультразвуковой диагностики маточных труб у женщины является ее неспособность забеременеть.

Так, если у пары длительное время не получается зачать ребенка, гинеколог с большой вероятностью выпишет женщине направление на эхографию (сонографию) маточных труб.

Данное исследование призвано проверить проходимость маточных труб.

Процедура выглядит следующим образом: женщину просят устроиться в гинекологическом кресле.

Доктор осматривает пациентку на предмет наличия спаек либо полипов в матке, так как эти образования также могут препятствовать беременности.

После этого в шейку матки пациентки вводят физраствор и сканируют матку и маточные трубы уже при помощи УЗИ.

Если женщина здорова и проходимость маточных труб в норме, физраствор будет вытекать в брюшную полость, если же есть проблема, жидкость будет скапливаться в матке и маточных трубах.

Ультразвук помогает точно определить, какая именно часть маточных труб является непроходимой, благодаря чему доктор может скорректировать терапию.

Особенного дискомфорта сканирование матки и маточных труб пациентке не приносит. Есть лишь некоторые нюансы касательно подготовки к исследованию.

Обязательным условием для получения качественной картинки в ходе УЗИ маточных труб является то, что процедура должна проходить в период, когда мочевой пузырь максимально наполнен.

В связи с этим за 40 минут до исследования женщине необходимо выпить не менее полутора литра жидкости.

Кроме того, УЗИ маточных труб требует предварительных анализов – на венерические заболевания и гепатит C. Проводить исследование лучше в первые дни после окончания менструации.

Несмотря на сложности подготовки к процедуре, ультразвуковая диагностика органов малого таза является самым предпочтительным из всех видов неинвазивных исследований, особенно это касается молодых женщин, которые планируют забеременеть.

Неоспоримым преимуществом эхографии является абсолютная ее безопасность. После УЗИ маточных труб женщина может в этом же цикле планировать беременность.

Таким образом, эхография на сегодняшний день – один из лучших в плане информативности, приемлемый по цене и абсолютно безопасный метод визуализации внутренних органов человека.

Что такое ультразвуковая диагностика

Для начала разберемся что вообще такое ультразвуковое исследование УЗИ и для чего это нужно? Метод ультразвуковой диагностики представляет собой один из важнейших способов неинвазивного исследования органов и систем, основанный на способности ультразвуковых волн проходить через ткани организма и по-разному отражаться на границах раздела тканевых сред в зависимости от плотности органа. Отраженный ультразвуковой сигнал регистрируется и обрабатывается электронной системой ультразвукового сканера и на мониторе появляется определенный срез сканируемого органа.

В диагностических ультразвуковых аппаратах интенсивность ультразвука не превышает 1 мВт/см, что практически не оказывает нежелательного влияния на организм пациента

.
Диагностические способности сонографии основываются на анализе формы, размеров, расположения, контуров, эхоструктуры органа и/или патологического очага и его взаимоотношения с окружающими тканями и средами. Эхография, являясь частью диагностического процесса, определяет наличие патологии или ее отсутствие в исследуемом органе.
По результатам верификации нормы, или патологии проводятся следующие определения патологического процесса:

При необходимости в заключение ультразвукового исследования проводится оценка динамики и определение сроков повторного исследования.
Цели и задачи метода ультразвуковой диагностики достаточно обширны, основными из них являются:

Основы сонографического исследования

Термин эхография или сонография обозначает определенную область ультразвуковой диагностики, которая предусматривает получение изображения среза внутренних органов, соответствующее их реальным размерам и состоянию.
Из всех возможных способов получения акустического изображения биологических структур с помощью ультразвука наибольшее распространение получил способ ультразвуковой (УЗ) эхолокации. При этом применяется периодическое излучение ультразвуковых импульсов во внутренние структуры организма и прием сигналов, отраженных акустическими неоднородностями структур. Совокупность принятых сигналов, называемых эхосигналами, позволяет построить акустическое изображение биологических тканей на специальном индикаторе (мониторе). Величина (уровень) эхосигналов определяется отражающими свойствами границ раздела эхоструктур, что прежде всего связано с различием акустических характеристик структур. Кроме того, на характеристики акустического изображения влияют такие физические эффекты, как преломление — изменения направления УЗ-сигналов при переходе из одной среды в другую; рассеяние — многократное переотражение УЗ-сигналов на мелких неоднородностях; поглощение УЗ-сигналов вследствие вязкости среды.
Излучение УЗ-сигналов в определенных направлениях и прием отраженных эхосигналов с этих же направлений обеспечивает датчик (зонд). Изменяя направление излучения-приема, датчик осуществляет сканирование, то есть последовательный «просмотр» обследуемой области. Для того чтобы избежать потерь мощности УЗ-сигналов при прохождении через воздух, в котором затухание сигналов резко возрастает, между поверхностью обследуемого объекта (тела пациента) и рабочей поверхностью датчика наносится слой специального геля, хорошо проводящего ультразвук.
Излучение и прием УЗ-сигналов в процессе сканирования осуществляется периодически, при этом каждый раз в ограниченной области пространства, которая называется ультразвуковым лучом.
Генератором ультразвуковых волн является пьезодатчик, который в УЗ-аппаратах играет одновременно роль детектора (приемника) отраженных эхосигналов. Генератор работает в импульсном режиме, посылая около 1000 импульсов в секунду. В промежутках между генерированием УЗ-волн пьезодатчик фиксирует отраженные сигналы, причем время генерации и детекции составляет соответственно 0,1 и 99,9%. Столь длительное время детекции эхосигналов дает возможность получать визуально постоянную картину их распределения.
В зависимости от используемой конфигурации пьезоэлементов различают следующие типы датчиков:

Преимуществом линейного датчика является полное соответствие его положения на поверхности тела исследуемому органу, то есть представляется возможность выполнить визуальную «пальпацию” внутренних органов. Недостатком линейных датчиков является сложность обеспечения во всех случаях равномерного прилегания их поверхности к коже пациента, что приводит к искажению получаемого изображения по краям.
Конвексный датчик имеет меньшую длину при расширяющемся на глубине поле обзора, поэтому добиться равномерности его прилегания к коже пациента более просто. Однако при использовании конвексных датчиков получаемое изображение по ширине на несколько сантиметров больше размеров самого датчика. И для уточнения анатомических ориентиров врач обязан учитывать это несоответствие.
Секторный датчик имеет еще большее несоответствие между собственными размерами и получаемым изображением, поэтому используется преимущественно в тех случаях, когда необходимо с маленького участка тела получить большой обзор на глубине (например, при исследовании через межреберные промежутки).
Наиболее удобным для исследования органов брюшной полости, забрюшинного пространства, малого таза и щитовидной железы следует признать линейное (параллельное) сканирование, так как при этом поиск необходимых анатомических ориентиров осуществляется быстрее.
Важнейшей характеристикой датчика является рабочая частота. Датчики с большей частотой обеспечивают более высокое качество изображения, однако при этом уменьшается глубина исследования. Поэтому выбор частоты датчика обусловлен максимальной глубиной расположения исследуемых органов и структур. В ряде случаев при обследовании тучных пациентов приходится применять датчики с частотой 2,25 или 2,5 МГц, у которых максимальная рабочая глубина примерно 240 мм, однако разрешающая способность при использовании таких датчиков и, следовательно, качество изображения хуже, чем при частоте 3,5 МГц. Для обследования структур, расположенных на очень малых глубинах, применяются датчики с частотой более 10 МГц.
Для исследования органов брюшной полости и забрюшинного пространства, а также органов малого таза используется частота 2,5-3,5 МГц. Для исследования щитовидной железы применяется датчик с частотой 7,5 МГц.
По областям медицинского применения датчики классифицируются следующим образом:
1. Универсальные датчики для наружного обследования. Применяются для обследования абдоминальной области и органов малого таза у взрослых и детей. Тип датчика — конвексный, рабочая частота — 3,5 или 5 МГц.
2. Датчики для поверхностно расположенных органов (щитовидной железы, периферических сосудов, суставов и т. д.). Тип датчика — линейный, реже конвексный или секторный (с водной насадкой). Рабочая частота — 7,5, иногда 5 или 10 МГц.
3. Кардиологические датчики.
Тип датчика — секторный. Рабочая частота — 3,5 или 5 МГц.
4. Датчики для педиатрии.
Используются те же датчики, что и для взрослых, но с большей частотой (5 или 7,5 МГц).
5. Внутриполостные датчики:
— трансвагинальный,
— трансректальный,
— интраоперационные,
— трансуретральные,
— транспищеводные,
— внутрисосудистые.
Тип датчика — секторный, линейный или конвексный с рабочей частотой 7,5 МГц (реже 4 и 5 МГц).
6. Биопсийные или пункционные датчики.
7. Узкоспециализированные датчики:
— офтальмологические,
— датчики для транскраниальных исследований,
— датчики для диагностики синуситов, фронтитов и гайморитов.
8. Широкополостные и многочастотные датчики (с улучшенной разрешающей способностью, особенно в ближней и средней зонах по глубине; работает на различных переключаемых частотах).
9. Датчики для применения в допплерографии.
10. Датчики для получения трехмерных изображений.
В современных ультразвуковых диагностических приборах, использующих эхолокационный принцип действия, применяются различные способы получения и отображения информации об исследуемых биологических структурах.
Выделяют следующие режимы получения информации:
A-режим (англ, amplitude — амплитуда). Зондирование осуществляется при неизменном направлении акустического луча, и на экране монитора отображаются амплитудные значения эхо- сигналов от неоднородностей, находящихся на различных глубинах в пределах луча.
Амплитуды фиксируются на экране как функции времени t или глубины L, что дает информацию не только о глубине расположения структур, но и об уровне эхосигналов от них.
A-режим применяется как самостоятельный в ряде специализированных диагностических приборов, используемых в офтальмологии при транскраниальных исследованиях головного мозга, а также для обследования носовых и лобных пазух.
М-режим (англ, motion — движение) используется для регистрации изменения пространственного положения подвижных структур во времени.
В М-режиме зондирование периодически повторяется в одном и том же направлении акустического луча. Амплитудная информация об эхосигналах с различных глубин отображается в виде отметок различной яркости на экране, положение которых по вертикали пропорционально глубине отражающей структуры. Следующему зондированию соответствует своя линия, расположенная правее предыдущей, и в процессе перемещения столбца с каждым новым зондированием формируется двухмерная М-эхограмма в виде волнистой линии определенной конфигурации. Таким образом можно количественно оценивать геометрическое смещение подвижных структур и измерять изменение их взаимного положения.
Наиболее часто М-режим используется для исследования движения структур сердца.
В-режим (англ, bright — яркий). Двухмерное сканирование. Отраженные импульсы регистрируются на экране в виде светящихся точек, яркость которых прямо пропорциональна интенсивности отражения ультразвука. Поскольку пьезокристалл датчика аппарата находится в постоянном движении, а экран имеет длительное послесвечение, отраженные импульсы сливаются, формируя изображение сечения органа. Это самый распространенный вид отражения информации.
Д-режим (допплерэхография). В основе способа лежит эффект Допплера, заключающийся в том, что частота ультразвукового сигнала при отражении его от движущегося объекта изменяется пропорционально скорости движения лоцируемого объекта вдоль оси распространения сигнала.
Д-режим применяется для оценки скорости и других параметров кровотока.
Отраженные эхосигналы поступают в усилитель и специальные системы реконструкции, после чего появляются на экране телевизионного монитора в виде изображения срезов тела, имеющих различные оттенки черно-белого цвета. Оптимальным является наличие не менее 64 градиентов цвета черно-белой шкалы. Однако в современных стационарных аппаратах используется 256 градиентов. Каждый зарегистрированный импульс в зависимости от интенсивности соответствует определенному оттенку свечения. При позитивной регистрации максимальная интенсивность эхосигналов проявляется на экране белым цветом (эхопозитивные участки), а минимальная — черным (эхонегативные участки). При негативной регистрации наблюдается обратное положение.
Выбор позитивной или негативной регистрации не имеет значения и обусловливается только желанием исследователя. Полученное изображение фиксируется на экране монитора, а затем регистрируется с помощью термопринтера.

В качестве ограничений и недостатков ультразвуковой диагностики можно отметить такие как невозможность получения информации от газосодержащих структур (легкие, кишечник), трудность получения данных при наблюдении через структуры со значительным затуханием и рассеянием ультразвука (костные ткани, газосодержащие структуры), малая чувствительность при исследовании органов и тканей с незначительным различием акустических характеристик.

Как подготовиться к ультразвуковому исследованию (УЗИ)

Ультразвуковое исследование щитовидной и молочных желез, мягких тканей, периферических лимфатических узлов, органов грудной полости проводится без предварительной подготовки.
Для сонографии паренхиматозных и полых органов брюшной полости, забрюшинного пространства требуется специальная подготовка, направленная на уменьшение газообразования в кишечнике, которое препятствует прохождению ультразвуковых волн и получению изображения хорошего качества.
Газообразные вещества практически не проводят ультразвуковых волн в используемых для диагностики частотах, поэтому при исследовании внутренних органов воздух создает помехи в виде акустических теней. Прохождению ультразвука препятствует также бариевая взвесь. По этой причине подготовка к ультразвуковому исследованию органов брюшной полости и забрюшинного пространства направлена на максимальное уменьшение количества газов, содержащихся в желудочно-кишечном тракте, и освобождение его от остатков бариевой взвеси после предшествующих рентгенологических исследований.
С этой целью в течение трех дней перед УЗИ необходимо исключить из пищи черный хлеб, свежие овощи и фрукты, зелень, молоко, фруктовые и овощные соки, газированные напитки.

Кроме того, в течение 2-3 дней перед УЗИ, за 1 час до еды рекомендуется принимать предварительно растолченный активированный уголь по 2 таблетки 4 раза в день или отвар ромашки или укропного семени по 2 столовые ложки 4 раза в день. При запорах за день до исследования необходимо сделать очистительную клизму (применение слабительных средств противопоказано).
Перед УЗИ рекомендуется воздержание от приема пищи в течение 6-8 часов, воды — в течение 3 часов. В течение 3 часов перед исследованием не следует курить.
Итак, накануне исследования в течение трех дней пациенту назначается малоуглеводистая диета. Какие же продукты нужно исключить из рациона перед УЗИ? Из пищи рекомендуется исключить черный хлеб, свежие овощи и фрукты, молоко и молочные продукты, фруктовые и овощные соки, газированные напитки. Кроме того, назначаются адсорбенты внутрь (активированный уголь по 2 таблетки четыре раза в день, отвар ромашки или укропного семени). Пациентам, страдающим запорами, за день до исследования можно сделать очистительную клизму. Назначение солевых и масляных слабительных нежелательно. Исследование органов брюшной полости рекомендуется проводить натощак после ночного голодания, но в экстренных случаях исследование может быть выполнено в любое время.
Сонографическое исследование желудка проводится поэтапно.
1 этап: натощак с целью определения наличия или отсутствия желудочной патологии.
2 этап: при выявлении желудочной патологии — после возможно полного заполнения его полости жидкостью комнатной температуры для более детального исследования эхоструктуры желудочной стенки.
3 этап: при выявлении опухолевидных образований и инфильтративно-язвенных изменений желудочной стенки — с применением спазмолитических препаратов (2% раствор папаверина 2,0 мл внутрь; ректальные свечи с атропином — при нарушении глотания и выраженном рвотном рефлексе) с целью релаксаций стенок, увеличения объема желудка и улучшения визуализации эхоструктуры стенок, удлиняя время исследования при большей задержке жидкости в полости органа.
Визуализация желудка считается хорошей, если имеется возможность дифференциации всех пяти сонографических слоев стенки желудка в исследуемом отделе; удовлетворительной — если удается определить наружный и внутренний контуры стенки, измерить толщину стенки желудка без четкости слоев; неудовлетворительной — в случаях невозможности определения стенки вообще.
Для ультразвукового исследования органов малого таза (матки и придатков, предстательной железы и семенных пузырьков, мочевого пузыря) кроме подготовки кишечника требуется заполнение мочевого пузыря, для чего пациент за один час до проведения сонографии должен выпить 4—5 стаканов жидкости и не опорожнять мочевой пузырь. Возможно заполнение мочевого пузыря введением в его полость через катетер 0,05% раствора фурацилина.
Сонографию почек и мочеточников также желательно проводить после предварительной подготовки кишечника, при пустом мочевом пузыре (для исключения пузырно-мочеточникового рефлюкса).
Для максимальной интенсификации обследования больных и лиц из контингента риска многие диагностические процедуры приходится сочетать, проводя их нередко в один день. При составлении плана обследования необходимо иметь в виду, что проведение УЗИ сразу же после некоторых манипуляций снижает его информативность.
В процессе диагностики часто возникает вопрос о том, когда можно проводить сонографию. В связи с этим можно привести сроки проведения сонографии органов брюшной полости после некоторых диагностических процедур при исследовании плановых пациентов:
— эзофагогастродуоденоскопия — 1 сутки;
— фиброколоноскопия — 1 сут;
— бариевая клизма — 1 сут;
— рентгенологическое исследование желудка — 2 сут;
— лапароскопия — 3 сут;
— наложение пневмоперитонеума — 5 сут;
— наложение пневморетроперитонеума — 5 сут;
— лапаротомия — 5 сут.

Рентгенологические исследования, не связанные с введением в организм воздуха и бариевой взвеси (холецистография, внутривенная холеграфия, экскреторная урография и так далее), могут сочетаться с проведением ультразвукового исследования.

Предварительная подготовка желудочно-кишечного тракта не обязательна в ургентных случаях.

Противопоказания для УЗИ

Какие существуют противопоказания для проведения ультразвукового исследования (УЗИ)? Абсолютные противопоказания для сонографии не выделены, относительными противопоказаниями для применения метода являются: острые психические заболевания и состояния, при которых нарушен адекватный контакт с больным, коматозные состояния, обширная открытая раневая поверхность.
Затрудняющими проведение ультразвукового исследования являются наличие свободного воздуха в брюшной полости и скопление газов в кишечнике и желудке, грубые обширные рубцы передней брюшной стенки после ранений и хирургических вмешательств, гастростомы и колостомы, ожирение высокой степени, густые волосы на теле пациента.

Основные термины, используемые при ультразвуковой диагностике

Анэхогенный — отсутствие эхосигналов, имеет место при прохождении ультразвука через абсолютно однородную структуру, не дающую отражения ультразвука (содержимое мочевого пузыря и желчного пузыря в норме, содержимое кисты).
Гипоэхогенный — присутствие слабых эхосигналов, имеет место при отражении ультразвука от границ структур, мало различающихся по плотности, соответствует темно-серым тонам серой шкалы.
Гиперэхогенный — присутствие сильных эхосигналов, имеет место при отражении от границ структур, значительно различающихся по плотности, соответствует светло-серым тонам се-рой шкалы.
Средней эхогенности — присутствие средних по уровню эхосигналов, имеет место при отражении ультразвука от границ структур, средне отличающихся по плотности, соответствует срединным оттенкам серой шкалы.
Гомогенная — структура, от которой регистрируются однородные сигналы.
Гетерогенная — структура, от которой регистрируются различные по амплитуде (по силе) эхосигналы.
Акустическое окно — орган или структура, которые создают условия для лучшего прохождения ультразвука при исследовании нижележащего органа (печень для правой почки, мочевой пузырь для матки и яичников и т.д.).
Дистальная (акустическая) тень — отсутствие эхосигналов за структурой, от которой полностью отразился ультразвук (кость, кальцификат и пр.).
Дистальное усиление эхосигналов — наблюдается за структурой, содержимое которой не отразило и не поглотило ультразвуковые колебания при его прохождении через нее (киста, мочевой пузырь, желчный пузырь).

Понравилась статья? Поделиться с друзьями:
Чист и Здоров
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock detector